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Abstract

Communication network simulations have typically been visualized in the past

through 2D representations, but this is insufficient for battlefield network scenarios.

Visual representations of battlefield networks greatly benefit from 3D visualization

due to its ability to retain asset location. This research investigates the feasibility of

modeling a typical battlefield communication network in a realistic 3D manner and

discusses the effects of doing so. The result is an open source, 3D network visualization

tool that can create highly intuitive connected battlefield scenes, enabling the user

to quickly comprehend network state. It highlights mobile assets, packet movement,

and node connectivity while allowing the viewer to interact with the scene.
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Modeling Computer Communication

Networks in a

Realistic 3D Environment

I. Introduction

The visual representation of battlefield networks is increasingly important as

the battlefield becomes more connected. Nearly every battlefield asset from soldiers

to satellites contains a radio transceiver used to communicate throughout the op-

erational environment. Network simulation is a cost effective method to determine

problematic issues prior to deployment, reducing the need for building a test bed of

computers, routers, and switches to evaluate network performance. These network

simulations produce a large amount of data which contain all network events that oc-

curred in the simulation. It is often desirable to display this data visually, in order to

capitalize on the unique capabilities of the human visual system which “excels at pro-

cessing images and recognizing patterns” [36]. In the past, these networks were simple

enough to be visualized in a two-dimensional (2D) manner, but due to increased net-

work connectivity in the battlefield, a three-dimensional (3D) visualization is more

appropriate.

In a typical battlefield network scenario, node location is an important aspect

of the network topology. Battlefield scenarios greatly depend on a 3D representation,

since variation in elevation and the existence of obstacles such as mountains often

have a significant effect on successful communication. Node location determines line

of sight to the intended destination, and the existence of obstacles between them may

impede communication. Additionally, 2D visualization methods cannot truly capture

the movement of a variety of assets through an ever-changing terrain. One major thing

people need from visualization today is the existence of custom solutions to meet their

real-world needs [10], which in this case is a realistic 3D network visualization tool

1



Figure 1: Artist’s rendition of the connected battlefield [20]

which would allow the accurate portrayal of battlefield communication in an intuitive

manner.

This research investigates the feasibility of creating a 3D network visualization

that can accurately portray scenarios typically encountered on the battlefield. Cur-

rent network visualizations typically display homogeneous networks well in 2D, but

are lacking when displaying a realistic battlefield scenario such as the one shown in

Figure 1. This artist’s rendition of the battlefield is representative of the interoper-

ability between multiple types of communication assets, across a variety of locations

and elevations. 2D network visualizations cannot preserve the locations of a true

battlefield scene, which drives the need for a 3D visualization solution.

One problem with creating a new visualization is quantifying its effectiveness.

Information visualization is a very subjective research area, and no universal evalu-

ation methods exist. To address this issue, Chapter II explores common themes in

visualization research, including the use of affective computing, how to capitalize on

human perceptual abilities, and the use of animation to trigger cognitive response in
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users. This provides the basis for establishing criteria to create and evaluate the new

3D visualization tool as objectively as possible.

Building a new 3D visualization tool requires an understanding of current so-

lutions in the network visualization field. Numerous network visualization tools are

explored in Chapter II, separated into 2D and 3D categories. These include the

Network Animator (NAM), the Optimized Network Evaluation Tool (OPNET), the

interactive Network Simulator-2 (NS-2) protocol and environment confirmation tool

(iNSpect), the Network Visualization (NetViz) toolkit, and Huginn. Each of these

tools has distinguishing visualization characteristics, which can be leveraged for the

creation of a new tool. Understanding the strengths and drawbacks of each tool results

in a better final product.

The new 3D visualization tool created for this research is built using the Open-

SceneGraph (OSG) 3D graphics toolkit. Of the investigated 3D toolkits—OSG, the

Visualization Toolkit (VTK), and Autodesk 3ds Max—OSG proved to be the most

suitable to the task. Using available tutorials as a starting point, a 3D network vi-

sualization tool was built that is both flexible and effective at displaying network

simulation data.

This research provides three major contributions to the network visualization

field. Firstly, the created 3D visualization tool is an excellent communication aid,

which enables efficient and effective communication. Secondly, different packet ani-

mation schemes are investigated by this research, which attempts to find an appro-

priate balance between visual efficiency and simulation accuracy. Lastly, this research

provides an open source, 3D network visualization tool that can be tailored to meet

a variety of situations.
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II. Information Visualization and Computer Networks

Successfully modeling a computer communication network in 3D requires an under-

standing of visualization techniques as well as a knowledge of network visualization

currently in use. This chapter explores a number of topics in these two areas, starting

with general visualization concepts.

The human visual system provides an unparalleled capability to processing and

understanding data [35]. Effective visualization techniques exploit the human visual

system by pushing as much data as possible to the eye. Creating a useful visualization

requires an understanding of how to capitalize on the visual system through the use of

animation as well as the fourth dimension, time. Finally, the concept of visualization

applied directly to computer networks is discussed, and problems with transitioning

from 2D to 3D are briefly addressed.

Creating a successful network visualization requires an understanding of existing

tools. The major visualization solutions in use today are discussed, for both 2D and

3D, along with some previous research in the realm of 3D simulation and visualization.

By examining the strengths and weaknesses of each visualization, lessons can be

learned that aid in creating an effective new visualization.

2.1 Visualization Concepts

2.1.1 Affective Computing. In 1995, Rosalind Picard first coined the phrase

affective computing with regard to human-computer interaction (HCI), which seeks to

determine the emotional impacts of HCI while accurately conveying information [27].

Her research investigates how computers affect users’ emotions and seeks to identify

ways to reduce user frustration. Many people are confused and frustrated by tech-

nology, and in many cases turn hostile towards the computer itself. These violent

outbreaks achieve nothing productive other than the release of user tension, so it is

important to examine the source of this frustration and alleviate it if possible.

In many ways, this type of research is directly applicable to computer network

visualization. In order to reduce user frustration when dealing with network visual-
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izations, it is important to determine which aspects of computer interaction are not

ideal, and hopefully devise a way to alleviate them. By creating a visualization in-

terface that is intuitive, user satisfaction can be increased and frustration decreased.

Due to the complex nature of the data portrayed in a network visualization, this is an

important factor to consider when designing a visualization for computer communica-

tion networks. In a battlefield scenario in particular, there can be an extraordinarily

large amount of communication occurring between numerous types of assets, and this

can be overwhelming to users that are not accustomed to seeing this type of data. It

is therefore critical to display the information in a way that is easily understood by

the average user, hopefully making the analysis of the computer network both more

intuitive and reducing the time needed to perform the analysis.

2.1.2 Human Perceptual Abilities. There has been a good deal of research

performed in the field of affective computing to determine which types of visual stimuli

have the greatest effect. Graphic representations in particular, such as pie charts or

illustrated diagrams, allow people to easily process information visually in a quicker

and more intuitive fashion than by meticulously examining the original data [19].

3D interactive animation is very useful in shifting cognitive data load to the more

capable human perceptual system [29]. The cognitive analysis that occurs during the

visual perception process occurs very rapidly without conscious effort [36]. Visual

representations of data allow people to quickly draw more accurate conclusions about

the overall significance of the data.

It is worth noting that overuse of visual representations or the use of misleading

visualizations can result in misinterpretation of the data by the viewing public [19].

It is therefore critical to understand how to effectively use visual representations to

help people process information without adding further complication. By carefully

constructing a visualization based on what has been shown to be effective, a network

visualization can be created that is highly intuitive without leading to confusion.

5



2.1.3 Animated Visualization. As discussed in [19], [29], and [36], ani-

mation has a unique cognitive effect when combined with information visualization.

Animated visualization in this case means the addition of time-dependent motion to

the information visualization, either in an autonomous or user-controlled fashion. In

particular, adding time-dependent motion to an existing 3D visualization provides an

additional dimension, effectively creating a 4D graph. This enables increased real-

ism and provides the opportunity for greater user understanding. Furthermore, these

motions, when added to previously static visualizations, produce significant cognitive

effects in users which allow them to more accurately process data [19].

Animated visualization has been shown to be useful in three primary ways [19],

each of which can be directly applied to the successful portrayal of computer com-

munication networks. The first of these is when a user needs to identify the data

points that change in a significant manner. During network simulations, it is often

desirable to identify which nodes experience the most traffic and which are largely

idle. Animated visualization helps the user quickly and accurately identify nodes of

interest. The second primary use for animated visualization is when the user needs to

determine at what point in time a significant event takes place. In a computer network

scenario, it is often necessary to determine at which point in time a network event

occurred, such as a node failure or significant packet loss. Animating the network

simulation in a visual manner allows the user to quickly identify key points in time

that warrant further inspection. For example, examining packet flow in the network

before a network failure can be crucial to identifying the possible cause. The third

and most fundamental advantage that animated visualization provides is the feeling

of immersion, which allows for more intuitive data analysis. Displaying a computer

network in an animated fashion allows the user to picture the network in a realistic

manner and see how data flows throughout the network, which cannot be experi-

enced with a static display. Additionally, allowing the user to control the viewing

angle, zoom in and out, and control the flow of time results in a more immersive

visualization, leading to a more thorough grasp of the network.
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Animated visualization exploits the unique capabilities of the human percep-

tual system, which stimulates the recognition of patterns in data and structure in

information [29]. 3D visualization, especially when animated, allows the user to pro-

cess more information, doing so more quickly, with more comprehension [36]. This

animation aspect is particularly important, as it provides a greater degree of realism

to the visualization. One problem that arises when visualizing a network in 3D is

that of node occlusion, in which one object blocks the view of another. Objects in a

3D scene can occupy the background or foreground, meaning objects can sometimes

overlap or block the view of other objects. However, by animating the representation

to slowly rotate, or better yet, allowing the user to rotate, pan and zoom, this problem

is solved, while also providing greater clarity of the interspatial relationships between

scene components. Viewing a 3D object or scene from multiple views is critical to

understanding what is seen [13]. The user should be free to rotate, pan and zoom

throughout the 3D scene and investigate the distance between the different objects

and determine the relative positions of each 3D scene component.

2.1.4 Visualization and Computer Networks. Computer communication

networks consist of many communicating nodes, each transmitting and receiving sig-

nals to and from other nodes in the network. These networks are typically represented

in a 2D manner, with lines drawn between communicating nodes to indicate network

connectivity, which is essentially a graph. In a network graph, communicating nodes

are represented by vertices and communication links are represented by vertices. This

allows the user to see how data can flow from one device to another by determining

available routes throughout the network. The user can also ensure that all nodes are

reachable via communication paths by visually verifying network connectivity.

Since network maps are essentially graphs, metrics for graph aesthetics can

often be applied to them. For example, minimizing the number of edge crossings and

maximizing symmetry are two ways to enhance readability [17] [6], as demonstrated

in Figure 2. In this figure, it can be seen that the graph is clarified from the random

7



Figure 2: Readability is increased by reducing edge crossings and maximizing
symmetry—the random layout of (a) is improved by reducing edge crossings (b) and
is most readable after fully removing edge crossings and maximizing symmetry (c) [6]

layout of (a) by reducing the number of edge crossings, resulting in the layout seen

in (b). The graph is further clarified in (c) by completely removing edge crossings

and maximizing symmetry in the graph. By arranging the nodes in this manner, it

becomes very easy to see how network traffic flows throughout the network.

Rearranging nodes to reduce edge crossings and maximize symmetry works well

for existing 2D network visualizations, because node location is typically not impor-

tant. For example, when visualizing the average corporate network, it is not especially

important how the nodes are represented, because they are all hard-wired. Since

nodes are connected by a wired connection, they each perform equally well regardless

of node placement. However, this cannot be done in a 3D battlefield scenario where

node location is vital to the clarity of the scene. If a tank asset is communicating with

a nearby plane asset, the two cannot be simply relocated for the purpose of visual

clarity, because their interspatial relationship carries vital information.

To alleviate this problem of overlapping communication links, which can quickly

create a dense web of network paths, the user must have control over the scene to

clarify links. By allowing the user to pan, rotate, and zoom around the scene, network

links can be clarified by viewing the scene from a different angle, while maintaining

node locations. In this manner, the geographic positions of battlefield assets can be

8



retained while still allowing the user to clarify communication links between two or

more nodes.

In a military battlefield network scenario, there are many disparate types of

communicating nodes, such as airplanes, helicopters, tanks, aircraft carriers, satellites

and ground stations, among others. Each of these has a specific manner in which they

can move and communicate with other assets. For example, if a helicopter needs to

communicate with a ground station that is currently blocked by a hill or ridge, the

helicopter can change its elevation to rise above the obstacle. On the other hand, a

land-based asset such as a tank does not have this same capability. It is important to

maintain this realism when creating the 3D scene, to help establish visual credibility

of the visualization. A high degree of visual credibility includes using realistic assets,

realistic terrain, and animation paths that are typical of those assets. By ensuring

that assets move in a similar manner as their real-life counterparts, the result is a

scene that is more intuitive because assets behave in a manner that the user expects.

Adding an animation aspect allows the user to visually examine such factors as

system throughput, packet loss, and network congestion as a function of time. This

not only gives a better understanding of the network, but it also allows for the rapid

identification of critical nodes and backbone network paths.

2.2 Current Network Simulation and Visualization

There are numerous network simulators and visualizations in use today, and they

primarily fall into two distinct categories, two-dimensional (2D) and three-dimensional

(3D). To successfully create an accurate simulation based 3D network visualization

tool, it is imperative to examine the various solutions that currently exist. The follow-

ing section delves into each category and exposes the major works in each respective

field.

2.2.1 Two-Dimensional Network Simulation and Visualization. Of current

network simulation visualization, the bulk of it falls in the realm of 2D visualization.
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This stems from the fact that 2D is much simpler to configure than 3D and requires

far fewer system resources. 2D is especially useful when node location is not a critical

characteristic of the communication network. This allows nodes to be rearranged as

necessary to enhance readability without affecting the performance of the network.

This section discusses the major 2D visualizations in use today and lists the distin-

guishing characteristics of each. These include the Network Animator (Nam), the

interactive Network Simulator-2 (NS-2) protocol and environment confirmation tool

(iNSpect), the Optimized Network Evaluation Tool (OPNET), and the Network Vi-

sualization (NetViz) toolkit. Understanding the strengths and weaknesses of each of

these is instrumental to creating an effective visualization. By capitalizing on the

strengths and avoiding the weaknesses, a more robust visualization can be realized.

2.2.1.1 Nam. The Nam visualization produces a visual representation

of network events that occurred during an NS-2 simulation [9]. NS-2 produces a

trace file as it executes a specified network scenario, which can then be later used by

Nam to aid the user in understanding network events. The user specifies the desired

scenario and network events in NS-2 and then can use Nam to animate these events

in a visual manner. Nam allows for real-time packet animation, current queue size at

each node, and graphs of various network parameters, adding significant capability to

the NS-2 simulator. The user is free to adjust a time slider to any point in time in

the simulation to get a better look at specific network events. A sample Nam network

visualization is shown in Figure 3, which shows a simple five node network. In this

scenario, packets are being sent from node 0 to node 3 (color coded in blue) and from

node 3 to node 1 (color coded in red), with node 2 forwarding packets as necessary

to support both of these network flows.

Nam was originally created to support wired network visualization, but has

been extended to also display wireless network activity. In a wired scenario, Nam

uses direct lines from node to node to indicate communication and displays rectangles

that travel from source to destination to indicate data flow. For wireless connections,
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Figure 3: Sample wired network visualization in Nam showing transfer of data
packets from node 0 to node 3 and from node 3 to node 1, using node 2 as an
intermediary node

however, Nam uses outward expanding broadcast rings, which reminds the user that

wireless transmission typically occur in all directions, more or less equally. An added

capability of representing wireless communication in this manner is that it allows the

user to visually inspect collision domains between two adjacent nodes, since each node

is competing for the same physical medium. However, it can sometimes be difficult

to determine which nodes are communicating when there are many overlapping rings

displayed at once.

The open source nature of both NS-2 and Nam has made each a favorite in the

research community. Without the need for expensive or restrictive software licenses,

researchers are free to explore the capabilities of each without restriction. This con-

trasts from proprietary networks simulation visualization software, in which altering

core functionality is not possible due to the closed source of the program code.
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Figure 4: iNSpect visualization featuring color coded nodes: source (blue), success-
ful destination (green), unsuccessful destination (red), and intermediate (yellow) [16]

2.2.1.2 iNSpect. The iNSpect visualization tool was created to display

network trace data from NS-2 and address shortfalls of visualizing wireless networks in

Nam [16]. iNSpect uses direct lines to indicate communication between nodes, similar

to wired communication in Nam. Instead of displaying data flow as moving objects,

iNSpect instead uses arrows between nodes to indicate in which direction commu-

nication is occurring. Additionally, nodes are color-coded so the user can quickly

distinguish what role a node is currently performing. In the default color scheme,

blue indicates source nodes, red or green indicates destination nodes (depending on

whether the transmission is successful), and yellow indicates nodes on the path that

are forwarding the message towards its destination. A sample iNSpect network vi-

sualization is shown in Figure 4, which shows network traffic in a mobile ad hoc

network.

The iNSpect visualization provides benefits as well as drawbacks, as is the case

with any solution. The arrows from source to destination make it much easier to

follow a data packet along its path compared with Nam’s broadcast rings, and the

red and green destination nodes give the user a quick idea of whether most communi-
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Figure 5: Sample network visualization in OPNET, in which network nodes are
represented by generic boxes

cation attempts are successful. However, the program requires a more extensive NS-2

simulation to function properly, which almost doubles the trace file size. Another

drawback is that the arrows are not as intuitively obvious that data is currently flow-

ing from source to destination. A user unfamiliar with the program may interpret the

arrows as potential communication links, which could be solved by animating packets

between nodes as in wired communication.

2.2.1.3 OPNET. The OPNET network simulation suite provides a

network event simulator as well as an associated visualization to display network

events. OPNET represents network events in much the same way as Nam, with links

representing wired connections and broadcast rings representing wireless connections.

A sample OPNET visualization can be seen in Figure 5, which shows communication

between a number of network nodes. These network nodes are represented by generic

boxes, which makes distinguishing between them difficult.

OPNET is a powerful tool that allows the user to create and execute network

scenarios, though its proprietary nature presents difficult challenges. Successfully

modifying OPNET’s visualization behavior requires extensive knowledge of the inter-
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nal workings of the simulator, and it is easy to corrupt existing functionality when

attempting to add alternate visualization methods. The proprietary nature of OPNET

severely limits its use as a network visualization research platform since modifying its

visualization features is very difficult due to the closed source nature of the program.

OPNET is a very useful tool for network simulation research, but for exploring alter-

nate network visualization techniques, other open source tools such as such as Nam

or iNSpect are more accommodating.

2.2.1.4 NetViz. The NetViz toolkit was developed to address short-

falls of Nam, iNSpect, and OPNET, building a network visualization framework for

both wired and wireless communication [2]. NetViz supports traditional network vi-

sualization features, such as packet animation, queue levels at each node, and dropped

data packets in the network. Unlike other 2D visualization, NetViz features realistic

assets instead of generic boxes. This can be seen in Figure 6, which depicts commu-

nication between aircraft, an unmanned aerial vehicle (UAV), a satellite, and other

assets. This figure shows individual packets and supports display of transmission

queues, as seen on the satellite node. A distinguishing characteristic of NetViz is the

ability to examine the current status of any node as the visualization executes, allow-

ing the user to see in real-time such statistics as packets sent, received or dropped,

node position, and velocity. NetViz also explores the concept of force-directed layouts,

in which the visualized network layout changes according to certain network charac-

teristics [3]. For example, one such method is based on end-to-end delay, in which

nodes that experience shorter end-to-end delays are pulled closer together and nodes

with higher end-to-end delays are pushed further apart. This allows the user to gain

insight into the delay of the network without fully analyzing each link individually.

Originally designed to support trace files from a simulation executed in NS-

2, the toolkit was expanded to also support OPNET trace files as well, which are

generated through the use of a third party plugin [2]. This was achieved through

the development of a robust file parser that processes the trace files, extracting the
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Figure 6: A NetViz visualization featuring aircraft, a UAV, a satellite, and an
aircraft carrier [3]

critical information needed to run the visualization. The result is a visualization that

is simulator-independent which can be used to analyze scenarios executed in either

simulator.

2.2.2 Three-Dimensional Network Simulation and Visualization. There has

been significant work done in the realm of 3D network simulation and visualization,

though not quite to the extent of 2D visualization. Two primary research works

stand out in particular: one investigates ad hoc network simulation using realistic

3D terrains [7], while the other renders a 2D network map in 3D, and uses the third

dimension to display additional network information [30]. Additionally, the OPNET

suite includes the ability to visualize network events in 3D, which shows that the

commercial world is interested in a 3D networking solution. Each of these works is

important to 3D network visualization, and lessons can be learned by examining their

strengths and weaknesses.
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Figure 7: Realistic 3D terrains used in [7]: valley (left) and mountain range (right)

2.2.2.1 Network simulation with 3D terrains. Most wireless network

simulators use an extremely idealized model known as the “flat earth” model, in

which all radio signals propagate equally in all directions, with no regard for inter-

fering objects [28]. In some situations, this model performs quite well at accurately

reflecting real-world performance. However, in other situations such as battlefield

communication or the deployment of an ad hoc network, use of the flat earth model

is questionable due to real world terrain and features such as rocks and trees. These

obstacles introduce interference and the natural terrain of the area creates hills and

valleys that affect the ability of wireless signals to travel to their intended destination.

This terrain blocking dilemma has been explored in previous research, which

shows the results of a typical flat earth network simulation compared with one exe-

cuted with a realistic 3D terrain [7]. Developed as an extension for the NS-2 simulator,

the model uses line-of-sight and a custom propagation algorithm to determine more

accurate signal propagation ranges for a given terrain. Figure 7 shows two of the

terrains used in the experiments: the left terrain is a valley created by nearby moun-

tains and the right terrain is a mountain range. Using this model, the authors have

shown that terrain can have a significant effect on throughput when compared with

the idealistic flat earth model. By taking into account terrain features, it is possible

to get a more accurate picture of the ad hoc communication network before actual

deployment.
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2.2.2.2 Huginn visualization. The Huginn visualization takes a 2D

trace file from NS-2, models the network in 3D, and then uses the third dimension to

display additional network characteristics [30]. This visualization uses the third di-

mension more for visual reasons than for real-world accuracy purposes. Created before

NS-2 supported 3D coordinates, this network visualization uses the third dimension

to display statistics such as bar charts, floating text, and data transmission paths, as

shown in Figure 8. In this figure, the smaller radius rings indicate a communicating

node’s transmission range, while the larger radius ring indicates which nodes could

potentially cause a collision of wireless signals. Small rings above a node indicate that

it is currently transmitting, and the cones projecting outward from transmitting nodes

indicate which nodes are receiving that transmission. In addition to other displayed

data, the visualization also provides a Heads-Up Display (HUD) which provides the

user with other scene controls, such as the ability to mark a particular node with a

colored flag. The user can see connectivity between nodes, data packet flow, and other

network characteristics typically experienced in 2D visualizations, but the addition of

a third dimension allows for more information to be displayed at one time.

Huginn supports user control of both the overall view of the network as well

as control over simulation time. Huginn allows the user to pan, rotate and zoom

throughout the network to gain a better understanding of the interaction between

communicating nodes. For example, the user can examine a small subset of nodes, if

those nodes are of particular interest. This allows the user a greater understanding

of the ongoing data communication and can be useful for evaluating performance of

various routing protocols. Additionally, the user can move the simulation forward or

backward in time to examine interesting data traffic at a given time point. Giving

the user full control of all four dimensions of the visualization provides optimum

immersion, and allows for a greater understanding of the network.

2.2.2.3 OPNET. The OPNET Modeler has an optional add-on which

enables 3D animation of network events [24]. The OPNET 3D Network Visualization
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Figure 8: Huginn uses the 3rd dimension to display additional information while
visualization a 2D simulation [30]

(3DNV) tool adds the capability to create 3D scene graphs which can be used to

depict communication between network assets. The suite provides the capability to

use realistic terrain to gain an understanding of terrain masking, propagation loss, and

feature interference. The suite provides significant capability for visualizing military

networks, and provides a library of 3D models and realistic terrains, which can be

further expanded by the user. The visualization allows the user full control of the

camera and provides the ability to record animation sequences for future playback.

Figure 9 shows a mapping from a 2D OPNET scenario to an equivalent 3D scenario.

In each of the two composite images, yellow lines are drawn from the 2D scene to the

3D scene, indicating the mapping of 2D nodes to 3D nodes. Display of network node

data such as latitude, longitude and compass bearing in the corners of the screen help

the user better comprehend the 3D scene.

Like the rest of the OPNET suite, the 3DNV tool is a proprietary solution which

is both expensive to license and difficult to modify. The 3D visualization is even

further locked down compared to the core OPNET package, preventing the user from
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Figure 9: Mapping from a 2D scenario to a 3D scenario in OPNET–the yellow lines
indicate which nodes correspond in the two scenarios [26]

modifying the visualization to explore new areas. For example, exploring alternate

packet animation schemes is extraordinarily difficult without access to the program’s

source code. The OPNET 3DNV tool uses colored links to represent current signal

strength, but real-time packet animation is not shown in the 3D scene graph [25]. For

this reason, the OPNET 3DNV capabilities are not sufficient to examine strengths

and weaknesses of various packet animation schemes. An open source solution with

equivalent capability would alleviate this problem, allowing the research community

to examine alternate network traffic animation algorithms.

2.2.3 Discussion. Based on existing 2D and 3D network visualization, it can

be seen that 3D brings new capabilities to the table, though it also brings its share of

difficulties. One major strong point of 3D visualization is the ability to use realistic

terrain data to explore terrain blockage of wireless communication. Simulations can

be executed in 2D using topological data, but to truly grasp how terrain affects signal

propagation, a 3D scene is ideal. Another strong suit of 3D compared with 2D is

the ability to maintain the interspatial relationships between network nodes. This

allows the user to recreate battlefield scenarios in a very realistic manner, accurately

reflecting how units will be deployed. This also brings about a downside compared
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with 2D, as nodes can no longer be rearranged to increase clarity and address the node

occlusion problem. This problem is greatly reduced by allowing the user to reposition

the scene camera, though this can require constant interaction from the user in the

case of a densely populated scene.

The OPNET 3DNV tool provides the ability to view network simulations in 3D,

though its lack of extensibility unfortunately makes it a poor choice for investigating

new visualization methods. In addition, OPNET 3DNV requires an expensive license

to use, which can be prohibitive to further development. A freely available, open

source solution would be ideal for investigating the benefits and drawbacks of different

animation schemes, user interaction, and other visualization techniques.

2.3 Evaluating Visualization

As information visualization is subjective in nature, it is difficult to establish a

de facto standard for evaluating visualizations. However, there are numerous goals

established by prior research that can be used to provide some level of evaluation for

the desired network simulation visualization. These evaluation criteria primarily fall

into two categories: information visualization and communication network visualiza-

tion. A third method of evaluating visualization is through human testing, though

this method introduces new complications.

2.3.1 Evaluating Information Visualization. There are many suggested

methods for evaluating whether a given visualization is effective at conveying in-

formation while minimizing user frustration. The following list enumerates the evalu-

ation concepts, and each will be discussed in further detail. The created visualization

should:

1. Allow users to have control of time and space [19]

2. Facilitate narration of events [10]

3. Stand on its own [15]
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4. Be based on non-visual data [15]

5. Create a result that is readable and recognizable [15]

6. Adapt to serve multiple needs [34]

7. Make effective use of spatial layout and grouping [6]

2.3.1.1 User Control of Time and Space. By allowing the user full

control of time and space, many problems are averted when transitioning from a 2D

visualization to a 3D one. Viewpoint control helps the user overcome problems of

node occlusion and edge intersections, while providing a feeling of immersion in the

3D scene. Control over the time domain allows the user to move forward and backward

in time as desired and examine points of interest. By giving the user control over time

and space, the user feels less like a spectator and more like an active participant [19].

2.3.1.2 Narration of Events. It has been noted that something people

need from information visualization are “tools that make it easy to tell stories” [10].

As a people, telling stories is a fundamental aspect of life. From casual conversations

to keynote speeches, effectively telling stories is common in everyday life. A mark of

a successful visualization is its ability to facilitate the telling of a story by shifting the

narration of events from the presenter to the visualization itself.

2.3.1.3 Independence. An effective visualization must be able to stand

on its own, without the need to reference the original data [15]. Visualizations largely

exist to reduce the need for manual data processing, allowing trends and patterns

to emerge visually without extensive examination of the source data. It is critical

that a visualization create an independent picture that needs no cross-referencing to

comprehend.

2.3.1.4 Based on Non-visual Data. One of the key points made re-

garding visualization is that visualization must be based on non-visual data [15]. If

the input data is an image and the output includes the same image, no visualization
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is actually being performed [15]. Turning raw text or numerical data into something

visual is a good step towards creating a useful visualization.

2.3.1.5 Readable and Recognizable. Data is able to be transformed

into an image in numerous ways, though not all of these produce an image that

allows the user to understand the data. A visualization must produce an image that

is understandable to the user, even if it requires training for the user [15]. Images

created by the visualization should be immediately recognizable for what they are

and not resemble other objects.

2.3.1.6 Adaptability. A visualization should be adaptable to serve

multiple needs [34]. Creating a visualization for a sole data sample may be useful for

that one sample, but a flexible visualization that can interpret other similar data is

ideal. The visualization should be created with a broad function in mind, not only

one specific data set.

2.3.1.7 Spatial Layout and Grouping. Spatial layout in a graph influ-

ences how a user interprets a given visualization, including determining the relative

importance of objects as well as identifying groups [6]. Users often interpret object

proximity to indicate relationships, so related objects should be closely grouped while

unrelated objects should be placed further apart [4]. Objects should be placed in a

meaningful manner in the visualization and not placed at random.

2.3.2 Effective Communication Network Visualization. Since network visu-

alization is a subset of information visualization, there are fewer evaluation methods

for determining its effectiveness. The most straightforward method is to compare a

newly created visualization to existing visualizations, though there are other factors

to consider. A visualization should:

1. Accurately display network simulation events [34]

2. Be efficient with regard to data display [34]
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3. Provide equivalent capability as existing visualizations

2.3.2.1 Accurate Network Visualization. A visualization should pro-

vide reliable results based on the source data, allowing the user to make accurate

quantitative evaluation. For network visualization, this means that every network

event in the simulation trace data should have a corresponding event in the visualiza-

tion. Additionally, timing of network events should be preserved in the visualization.

For example, propagation delays should remain consistent between simulation and

visualization.

2.3.2.2 Efficient Data Display. A visualization should make effective

use of the display space. Ideally, visualizations should be free of needless clutter and

maximize the “data-ink ratio” when possible [34]. This means maximizing data while

minimizing on-screen clutter and removing unnecessary or redundant images from

the visualization. For network visualizations, this means displaying network activity

without overwhelming the user with too much data. It can be difficult to find a good

balance of data and ink, so it is often necessary to examine multiple visualization

methods to find the most appropriate mix.

2.3.2.3 Comparison to Existing Visualizations. A good metric for

quantifying the performance of a visualization is to compare it to existing visualiza-

tions. If the created visualization can provide equivalent capabilities as current vi-

sualizations, while also providing new or improved capabilities, it supports the claim

that the new visualization is a step forward. A visualization that provides a feature

previously missing from current similar visualizations provides a valid contribution to

the community.

2.3.3 Human Testing. Since evaluating a given information visualization is

a largely subjective exercise, human testing is often used to quantify results. Test

subjects are presented with multiple visualizations based on identical data sets and
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each is ranked according to factors such as readability, aesthetics, intuitiveness, and

gained insight. This allows researchers to get an understanding of which visualization

methods are effective and which are not. However, this requires very careful planning

of the tests, and it is often difficult to validate the results due to the underlying nature

of human testing. For example, a user who primarily uses a particular visualization

is often inherently biased against alternative visualizations because the other visual-

izations are unfamiliar and therefore more difficult to use. Additionally, it is difficult

to quantify the amount of insight gained from one visualization over another [21]. In

many cases, the visualization featuring more “eye candy” is seen as superior, despite

technical shortcomings [10]. Sometimes there are many solutions that are equally

good, but vary in execution [12]. These difficulties with human testing can be allevi-

ated through fine-tuning of the user tests, though this can be a lengthy process.

2.4 3D Graphics Toolkits

Successfully creating a 3D visualization tool first requires choosing a 3D devel-

opment environment. There are numerous toolkits available for creating 3D visual-

izations, three of which are investigated in the sections that follow. OpenSceneGraph

(OSG) and the Visualization Toolkit (VTK) are both open-source solutions, while Au-

todesk 3ds Max is a proprietary solution. Distinguishing characteristics are discussed

for each.

2.4.1 OpenSceneGraph. OSG provides robust scene management capa-

bilities and optimization of rendered graphics by using a collection of open source

libraries. Scenes are built using standard C++, which in turn uses OpenGL low-level

graphics APIs to actually draw the scene. Begun as a flight simulator, OSG is cur-

rently used in numerous fields, such as virtual reality and scientific visualization. The

source code for OSG is freely available and the result is a design environment that is

portable to nearly all common operating systems, such as Windows, Mac OS X, and

most UNIX and Linux distributions [18].
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OSG was designed to create a development environment that is strong in the

areas of performance, scalability, flexibility, and portability. OSG supports customiza-

tion of the scene drawing process, allowing for extensive fine-tuning of system perfor-

mance. OSG’s use of underlying OpenGL libraries means that the programmer can

focus on creating content without the need for doing low level programming. OSG

comes with its own libraries to facilitate the easy creation of visually attractive scene

graphs. These libraries enable easy creation of things such as particle effects, shadows,

terrain rendering, animation, and 3D interactive controls. OSG was designed with the

idea of minimal dependency of operating platform, and only requires standard C++

and OpenGL to function properly. The result is a scene graph environment that is

highly portable and can run on Linux, Windows, Mac OSX, and even the Playstation

2 [23]. OSG was also designed for scalability and can run on anything from the most

basic computer systems to multi-core, multi-GPU systems. The result of these design

decisions is a highly flexible program that can be used to address a very wide variety

of needs.

Like most open source software, OSG’s open source nature results in improved

quality and stability, as it is reviewed and testing by a large community. By al-

lowing free access to the source code, developers are free to review and debug the

code, implement system optimizations, and overall produce a more robust software

programming environment. Furthermore, the open source nature of OSG means that

the code is available without cost and does not contain any proprietary or patented

software. A strong user community has developed around OSG, resulting in many

custom-built library solutions for a host of user-specific needs. These libraries extend

the core capabilities of OSG in many ways and are freely available for use by anyone.

2.4.2 The Visualization Toolkit. VTK is an open source graphics toolkit

used in many universities throughout the world. Originally created as a software

companion for a 3D graphics textbook, it has since developed a significant community

around it. VTK consists of a custom C++ class library that has been used for
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applications such as 3D computer graphics, image processing, and visualization. VTK

scenes are typically constructed using interpreted programming languages Python,

Java, or Tcl, which is then converted to C++ code before compilation. For advanced

users, this C++ code can be tweaked before compilation, or the entire program can

be written in C++ from the start if desired. VTK was designed in this way to

provide the performance of a compiled language while also providing the flexibility of

an interpreted language [31].

The VTK source code is available for anyone to compile and use, which allows

users and developers to improve the code as well as tailor it to meet their real-world

needs. VTK is a highly flexible toolkit that is appropriate for use in scientific and

information visualization applications due to its strong image manipulation capabili-

ties. VTK can be run on any computer independent of windowing system, supporting

Windows, Linux, and Macintosh operating systems. Though the source code is pro-

vided at no charge, Many questions can be answered by the community built around

the toolkit, though the company that created it, Kitware, does offer paid professional

support to those that need it [14].

2.4.3 Autodesk 3ds Max. Autodesk 3ds Max, previously known as 3D Stu-

dio MAX, is a proprietary toolkit used for modeling, animation, and rendering of 3D

graphics. It is used by numerous video game developers, television and movie studios

for its flexible plugin architecture and robust 3D modeling capabilities. The feature

list for 3ds Max is very lengthy, including multiple shading and texturing tools, poly-

gon modeling tools, and motion capture capability. This extensive functionality comes

at a price, however; a single license for 3ds Max retails at $3,495, though student and

educational institution licenses are available at a discounted rate [1]. Additionally,

3ds Max only runs on Microsoft Windows, which precludes portability to UNIX-based

systems such as Linux or Apple OSX.

3ds Max allows for very extensive scene tuning by giving the user control over

individual polygons. This allows the user to fine-tune the 3D object or scene to
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achieve optimization. 3ds Max uses its own scripting language, MAXscript, which

allows the user to automate tasks, create workflows, define custom user interfaces,

and much more. It features a useful scene explorer tool that presents the scene in a

hierarchical view, which allows the user to sort, search, or filter the scene by object

type. 3ds Max has animation features which allow an object to be animated along a

defined curve, with options for alignment, velocity, and looping, among others. This

allows the developer to quickly define an animation path for an object. The extensive

3D capabilities of 3ds Max make it a viable candidate for creating a 3D battlefield

scene.

2.5 Summary and Way Forward

This chapter has shown that there is a need for an open source 3D network

visualization solution. The created 3D visualization should be intuitive for ease of

use, animated to capitalize on the visual system, and realistic for quick interpretation.

Additionally the visualization must be able to be fully controlled by the user to provide

an immersive experience as well as minimize the node occlusion dilemma. Guidelines

are established in Chapter III based on the research performed, which should result

in a visualization that is both effective at conveying information as well as intuitive

to the user.
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III. Creating a Realistic 3D Communication Network

Visualization Tool

One of the major things that people need most from information visualization today

is custom solutions built to specifically address real-world needs [10]. In this case, the

real-world need is the ability to visualize complex, military communication systems

as deployed in the battlefield, in a realistic three-dimensional (3D) manner. This

research aims to directly address that need by creating a flexible, 3D scene graph

that is able to accurately depict battlefield communications as well as preserve the

interspatial relationships between battlefield assets as deployed in the field. This is

a capability that is absent from network visualization today and would be greatly

beneficial to the military communication community.

Additionally, this research aims to explore the effectiveness of different data

packet animation schemes. The OPNET 3DNV tool is useful for modeling computer

networks in 3D, but is limited in its ability to show network traffic, only displaying

node connectivity, as seen in Figure 10. In this figure, the aircraft is communicating

with nearby nodes, but data packet transmission is not visualized. Due to this limita-

tion, it is desirable to investigate potential ways to animate network traffic in a way

that is both accurate according to the simulation and efficient regarding data display.

This chapter discusses a variety of issues used to create a 3D network visual-

ization based on an actual network trace. The first section outlines the development

goals used to construct the 3D scene based on concepts discussed in Chapter II. The

second section discusses the development environment used to render the scene, in-

cluding why it was chosen and its benefits. The third section discusses user input,

which will allow the user to populate the 3D scene as desired. The fourth section

discusses interaction with trace files generated in the NS-2 network simulator and

synchronization between NS-2 and the created visualization. Finally, the last sec-

tion discusses proposed methods of evaluation, to determine the effectiveness of the

created visualization.
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Figure 10: OPNET 3DNV displays asset connectivity, but network traffic is not
visualized [26]

3.1 Development Goals

The focus of this research is to model a computer communication network in

a realistic 3D environment, with an emphasis on scenes typically encountered in the

battlefield. This is done by building a 3D scene graph modeled after a typical battle-

field scenario, populated with realistic terrain and communication assets. Figure 11

shows the complexity of 21st century battlefield communications. This image por-

trays how air assets must communicate with other air assets as well as land, sea,

and space assets, in a continuously changing environment. Networks such as the one

depicted can be modeled in 2D with limited success, but to effectively convey the

geographic location and interspatial relationships between communication nodes, a

3D scene graph is more effective.

The aim of this research is to build a 3D scene representing a theoretic bat-

tlefield scenario, guided by the list of goals below. These goals provide a framework

for effective 3D network visualization, based on the concepts outlined previously in

29



Figure 11: Battlefield networks are increasingly connected, requiring communica-
tion across a wide variety of asset types [5]

Chapter II. These goals were chosen to enhance the user experience when viewing a

network in 3D, while still maintaining equivalent capability as existing 2D visualiza-

tions. The goals are described in brief below and each will be discussed in further

detail in the sections that follow. The created scene should:

1. Use realistic assets, rather than generic boxes or spheres

2. Use realistic terrain and position the assets at terrain based elevations

3. Allow assets to be mobile according to user input parameters, i.e. flight patterns

4. Show network connectivity as assets travel throughout the scene

5. Show network traffic via animated sequences

6. Allow the user to pan, rotate, and zoom around the scene

3.1.1 Realistic Assets. One major failing of existing visualizations is the

lack of realistic assets when portraying networks. Currently used visualizations, such

as Nam or OPNET use generic boxes to represent network components. Though this

is adequate for representing computer networks featuring stationary assets, such as

corporate networks or wireless sensor networks, these types of visualizations fall short
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when portraying battlefield components. When battlefield communication assets,

such as tanks and planes, are represented by a non-descript box, user immersion is

greatly reduced. Either the user has to reference an external network listing that

describes which box represents which asset, or the boxes are labeled with functional,

yet not ideal, labels beneath the objects. NetViz explored this problem to some extent,

by replacing the communicating nodes with images of their real-world counterparts

(see Figure 6.

Ideally, the user should be able to tell assets apart immediately without having

to cross-reference other documents or text labels. In short, a tank should look like a

tank, and a plane should look like a plane. This affords the user greater immersion

in the network scene, and allows the user to spend a greater deal of time analyzing

the scene, rather than consulting a network key to distinguish network components.

In this vein, the 3D network visualization created herein shall use realistic assets

as encountered in an actual battlespace environment. By using real-world assets to

visualize the network simulation, the foundation is laid for visual credibility by the

resulting scene. Visual credibility is vital to user comprehension, since it means that

the user’s experiences coincide with his/her expectations.

3.1.2 Realistic Terrain and Positioning. The idea of using realistic terrain

when visualizing the network simulation again falls under the umbrella of visual cred-

ibility. When a user sees a scene that appears to be natural, the user is then able

to spend more time analyzing the network, rather than trying to comprehend the

scene. Realistic terrain establishes visual credibility by displaying terrain typically

encountered on the battlefield. This technique is not currently utilized by existing

network visualizations, even those that dabble in the third dimension. The Huginn

visualization discussed in Section 2.2.2.2 represents the network in 3D, but positions

the nodes along a flat surface. This lack of terrain is not indicative of the real world

and therefore visual credibility is weakened. Additionally, the research using realistic

terrains, discussed in Chapter II, Section 2.2.2.1, is lacking in its implementation.
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The authors use realistic terrains when executing their simulation, but the resulting

visualization is the standard Nam output. A user viewing the output in Nam would

see the packets being dropped due to terrain interference, but would have no way of

knowing precisely which communication links are blocked.

Relatedly, realistic positioning allows for greater visual credibility as well. Ex-

isting network simulators position nodes along a 2D plane, or in the case of the

research explored in Section 2.2.2.1, along realistic terrain, though always at the

surface. However, in any battlefield scenario, there are assets positioned above the

ground surface. Most battle operations employ a variety of assets not only on the

ground, but also above or below the surface. For example, many ground operations

have air or sea support at some level, and no operation is executed without the use of

satellite communication. In a 2D network visualization, these air and space assets can

be positioned in such a manner as to separate them from the ground assets, but this

requires repositioning assets in an unrealistic fashion that degrades the user experi-

ence. By representing the network in 3D, however, assets can be correctly positioned

in real space, creating an image that is indicative of the real world and adding further

to the idea of visual credibility.

3.1.3 Mobile Assets. The third design goal for the created visualization,

again tied to the idea of visual credibility, is to allow nodes to be mobile according to

user input parameters. Aside from assets such as satellite ground relays or geostation-

ary satellites, communicating nodes in a battlefield environment are rarely stationary.

The visualization should support mobile assets, either defined explicitly by the user

or inherited implicitly from the simulation trace file. This includes driving paths for

ground-based assets, flight paths for air-based assets and submerge animations for

assets such as submarines. For example, ground units should be mobile based on

a starting location and subsequent waypoints for the asset to travel in a sequential

manner. Similarly, air assets should be allowed to loiter in a particular location,

subsequently travel to a new location, and loiter there if necessary. If the assets in
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the visualization behave in a predictable and familiar manner, the user experience is

enhanced.

Allowing communicating assets to be mobile adds a greater degree of realism to

the visualization by more accurately depicting what is encountered on the battlefield.

Existing 2D visualizations have reasonable capabilities in this regard, especially with

the increased research in mobile ad hoc networks. Both the NS-2 and OPNET network

simulators allow mobile assets in their simulations, and 2D visualizations such as Nam,

OPNET, and iNSpect support accurate visualization of the created simulation data,

including node mobility. It is therefore desirable to extend this simulated behavior to

the 3D environment, allowing for a more realistic user experience.

3.1.4 Network Connectivity. Displaying network connectivity is a funda-

mental aspect of successful network visualization. In order to accurately depict data

packets traveling from node to node, it must be represented to the user that those

two communicating nodes share a communication link between them. To achieve

this, the created network visualization will represent this connectivity by drawing

lines between communication nodes, much like the manner in which Nam indicates

connectivity. This informs the user which nodes communicate with each other in the

network simulation. The visualization will have the option to display all links, indi-

cating all available communication paths, or only display those that will be utilized.

Displaying all possible communication paths informs the user what communication

routes are available, while displaying only those that are utilized reduces scene clutter.

Showing network connectivity in this fashion is the commonly used method

in existing wired network visualizations. Typically wireless communication is repre-

sented by rings that propagate outward from the transmitting node, which illustrates

that the signal often propagates in all directions. This is not the case for all wireless

transmissions, however, since satellites, their associated ground stations, and some

other battlefield assets utilize directional antennas that transmit roughly in a straight

line. On the other hand, some assets have non-directional antennas that communi-
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Figure 12: In this sample battlefield scenario, the aircraft at center is providing
network connectivity to the tanks around it

cate outward from the transmitting node in all directions. For the sake of consistency,

the created visualization will depict all network communication links as lines between

two communicating assets. These communication links can either be populated at

the start of the scenario and drawn at all times or only drawn when they are being

used, based on the desires of the user.

An example scenario is that of a loitering aircraft providing network capability

between a group of tanks, as depicted in Figure 12. In this simple example, the

aircraft is connected with a line to each of the tanks to illustrate that connectivity

is being provided. The tanks, however, are not be directly connected to each other,

because communication between them are routed through the loitering aircraft. In

the visualization created by this research, the user will be able to choose between

displaying all available links or only displaying those links with data being sent across

them. Displaying all links allows the user to investigate alternate data paths, while

displaying only the communication links that will be utilized decreases the amount of

clutter in the visualization and provides more clarity of the network scene.
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3.1.5 Network Traffic Animation. Accurately displaying network traffic via

packet animation is another fundamental concept of successful network visualization.

For the user to be able to determine which nodes are currently communicating there

must be a visual indication that this communication is occurring. In the visualization

created by this research, network packets will be represented by a small geometric

shape that travels along the communication links. This small shape will travel from

the transmitting node to the receiving node, much like is seen in a Nam visualiza-

tion (see Figure 3). In this manner, the user can visually confirm that nodes are

successfully communicating and determine which links are the most utilized.

A problem arises when animating packets in this manner, while also allowing

assets to be mobile. In a computer communication network, there can be hundreds

or even thousands of network events occurring every second. This means that for

every foot a tank travels, it is possible that hundreds of packets are transmitted in

the network in the same time frame. If the tank is moving in real time, the packets

will be moving so quickly that the user will be unable to comprehend what is going

on. On the other hand, if time is slowed to allow for closer inspection of network

traffic, the tank will appear as if it is not moving at all. Thus the problem is that the

quantity of events with regard to packet animation is significantly larger than that of

node animation in the same period of time. Four potential solutions are explored for

this problem, as described in the following paragraphs.

3.1.5.1 Packet Aggregation. In this solution, network packets are not

animated until a transmitting node has sent a threshold number of packets. Different

quantities of thresholds will be tested to see if this solution is viable. This will greatly

reduce the amount of ongoing packet animation in the scene by only transmitting

when the set number of packets is reached. For example, a possibility is to only

animated a packet for every 100 simulation packets. This can be easily achieved by

implementing a running counter that ignores the first 99 packets, animates the 100th

packet, then resets the counter to zero. The packet aggregation scheme can be fine-
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tuned according to the scenario to strike a balance between packet animation and

node animation.

3.1.5.2 Enlarged Packets. This solution waits a certain duration of

time before displaying the packet animation and varies the visualized packet size

based on the number of packets it represents. Different amounts of time will be

tested to determine optimal time accumulation– one possibility is to only display

packet transmission every 2 seconds. Since some nodes will send a greater or fewer

number of packets in this timeframe, the size of the visualized packet will increase

or decrease accordingly. This will be achieved by varying the packet size based on

the number of packets it represents. For example, a visualized packet representing

1000 simulation packets will be twice as large as a visualized packet representing 500

simulation packets. This will be done by implementing counters for each network

communication link that increment each time a simulated packet is read from the

simulation trace file. Then once every user defined duration, such as every 2 seconds,

these counters will used to determine the size of the visualized packets and animate

them along each corresponding data path. The counters are then reset and the process

repeats. This allows the user to get a quick visual reference of which nodes are sending

the most data while helping to find a balance between packet flow and node animation.

3.1.5.3 Triggered Links. This solution eliminates the traveling packet

from node to node and instead varies the presence, size, and opacity of the transmis-

sion link to indicate packet flow. When two nodes are not communicating at all, no

link will be shown between them. When transmission begins, the cylindrical link will

be drawn between the communicating nodes and will initially be translucent with a

small inside diameter. As network traffic increases, the inside diameter of the cylin-

der will increase and the link will be made increasingly opaque as data flow increases.

The user will be able to define the threshold at which the link becomes completely

solid, and this value will be used to determine intermediate transparency values. For

example, the user may set a threshold value of 100 packets per second, which means
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that a link experiencing 25 packets per second will be 25% opaque and links with a

flow of 100 packets per second or greater will be completely opaque. This solution

allows the user to quickly grasp which nodes are currently communicating and get a

rough esimate of the volume of traffic that is flowing between them.

3.1.5.4 Inspection Button. The final solution implements an inspec-

tion button that greatly reduces the time step increment, to allow for further network

traffic analysis. In this scenario, packet animation is not shown at all during normal

scenario execution, but allows the user to inspect the network traffic at any time by

pushing an inspection button. After the button is pressed, time is greatly slowed

so that packet animation can be seen, and mobile assets such as tanks and planes

appear stationary, though they are actually moving at a very slow rate. The user can

then resume the scenario once the visual analysis is complete. A small banner will

be overlaid at the top of the screen indicating the scene is currently in the inspection

state. This lets the user know that the scene is currently slowed, in the event that

the inspection button is pressed during a period of no network traffic. Without the

banner, the scene would appear to be frozen, perhaps causing the user to think the

application has stopped responding. This solution allows for full analysis of packet

animation, while also providing a way to simply view the battlefield scene, all based

on the user’s desires.

3.1.6 Scene Control. Based on research discussed in Chapter II, the created

visualization will allow the user full control of the camera viewing the scene. This

means that the user will be able to zoom in and out, pan around the scene, and fully

rotate as desired for clarification or inspection of an area. Allowing the user to have

full control over the viewing angle of the scene should provide more immersion than

fixing the camera in a particular view, and also solves the problem of node occlusion.

Transitioning from 2D to 3D means that an asset in the foreground can block other

assets communication links located in the background of the scene. To alleviate this

problem, the user will be able to rotate around the scene as necessary to remove these
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Figure 13: The node occlusion problem—objects A and B block view of object C
from the viewpoint of the user [8]

obstructions. Figure 13 demonstrates this problem visually. In this figure the user,

located at point v0, cannot see object C because it is hidden behind objects A and B.

Most importantly, allowing the user full control of the camera creates a feeling

that the user is actually “in” the battlefield scene, moving among the various assets.

Rather than only viewing the battlefield scene from a distant location, the user is

free to travel in and around the scene, move between assets, and truly grasp the

interspatial relationships between the communicating nodes.

3.2 Development Environment

Of the considered 3D visualization toolkits discussed in Section 2.4, OpenScene-

Graph (OSG) was chosen to be the development environment for the 3D scene. For

the sake of flexibility and portability, it was desirable to use a platform independent,

open source development environment, which eliminated 3ds Max. In the end, OSG

was chosen over the Visualization Toolkit (VTK) due to the availability of extensive
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Figure 14: Sample models available for use with OSG [11] [22] [32] [33]

tutorials. Created by a computer science instructor at the Naval Postgraduate School,

these tutorials provide a foundation for scene creation, including asset positioning and

terrain placement [32]. These tutorials proved to be very useful in designing 3D scenes

and helped get creation of the visualization tool off the ground.

OSG supports numerous 3D model file types, of which there are many available

freely on the Internet. Figure 14 shows a few of the 3D models that are freely available

for use with OSG. Clockwise from the top left, these models are: an A-10 aircraft,

a tank, a Harrier jet, and a Humvee. Further realism can be achieved by using the

exact models that will be deployed in a given military operation.

3.3 Simulator/Visualization Synchronization

The executed network simulation must be properly synchronized with the de-

sired battlefield scene to produce meaningful results. There must be a one-to-one

correspondence of nodes in the network simulator to those in the visualization. An-

imation paths must be consistent between the simulation and visualization. Care
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must be taken to ensure that nodes are mapped accurately from the simulation to the

visualization, so that network communication is represented correctly.

To ensure that the visualization and simulation aspects are properly synchro-

nized, the visualization must be created in a three step process. First, the user must

design the 3D scene using the created visualization tool, including the placement

of network nodes, utilized communication links, and definition of desired animation

paths. Creating the scene in 3D first allows the user to determine problem areas be-

fore proceeding to the simulation step. Drawing desired communication links ahead

of time helps to identify signal blockage due to terrain or other obstacles. Defining

animation paths prior to simulation identifies potential object collision due to over-

lapping animation paths. Once this step is complete, the scene will then need to be

recreated in an NS-2 simulation, maintaining node location and animation as accu-

rately as possible. The distance between nodes should remain consistent to preserve

signal propagation data and the 2D nodes should have animation paths that match

their visualization counterparts. The simulation can then be executed, which will

produce a network trace file that will be representative of the 3D network. Finally,

the last step is to import the NS-2 trace file into the 3D visualization tool, allowing

the user to see the simulation results in a realistic 3D environment.

This three step process ensures that each visualized node has a corresponding

simulation node, while also alleviating problems with transitioning from 2D to 3D.

The user can first ensure that the 3D scene is acceptable before proceeding to the

simulation step. Otherwise, the user may need to change the 2D simulation multiple

times due to signal blockage not present in a 2D scene. Each of these steps is explored

in further detail in the sections that follow.

3.3.1 Scene Creation and Validation. The rendered battlefield scene must

be defined by the user before it can be effectively displayed. The created network

visualization will allow the user to define the number, type, and position of assets

as well as animation paths for mobile assets. The user can define which nodes are
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connected via a communication link to determine if there is any obstacle that would

prevent successful communication. This allows the scene to be fully customizable to

the user’s needs.

3.3.1.1 Asset Population. Many node types will be available for use in

the scene, including planes, helicopters, tanks, and submarines, among others. Other

node types can be utilized if they are in a format that is recognized by OSG. Each of

these assets will require an X, Y, Z coordinate for placement in the scene

To populate the scene, the user will be able to specify the number, type, and lo-

cation of desired assets. Each created asset will have an associated group of Cartesian

coordinates (X, Y, Z ) that specifies where in the scene it will be located when the

visualization is started. Ground assets such as tanks or satellite ground stations will

be positioned using only the X and Y coordinates and the Z coordinate will be auto-

matically adjusted so the asset is located on the ground. Since the visualization uses

realistic terrain, the ground Z component will vary throughout the scene, meaning

the Z component of a ground asset must be updated based on the elevation to prevent

driving under the terrain or floating above ground. A Z coordinate of zero will be

reserved for ground assets, which tells the visualization to keep the asset in contact

with the terrain as the scene executes. Air assets such as planes and satellites and

sea assets such as aircraft carriers and submarines will be positioned using all three

coordinates. Sea assets such as submarines may require a negative Z coordinate, to

allow them to be partially submerged under a water terrain feature.

3.3.1.2 Animation Paths. To further add to the realism of the battle-

field communication scenario, the user will be able to define paths for mobile nodes

such as tanks and planes. For all node types, the user will be able to define way-

points for the asset to travel, using Cartesian coordinates, a time value, and a delay

value between waypoints. The asset will then travel to the waypoints in a sequential

manner, ultimately waiting at the final waypoint for the remaining duration of the

visualization. The time value will specify the time the asset should take to travel
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between waypoints, which will effectively define the velocity of the mobile node. The

delay value allows the mobile asset to wait at a particular waypoint for a given length

of time before proceeding to the next waypoint. For land-based nodes, the Z co-

ordinate value will be automatically updated to correspond to the current terrain.

For air-based nodes, the asset will travel in a direct line-of-sight manner to the next

waypoint. For air assets only, the user will be able to specify a second type of ani-

mation path. The user will be able to specify a loiter animation path, which allows

an airplane to fly in a circular manner around a target area. This can be useful if an

air asset is going to be used to provide connectivity to other nodes in a given area.

Defining and visualizing these animation paths in the first step allows the user to

discover and fix problems such as node collisions prior to simulation.

3.3.1.3 Communication Links. It is desirable to investigate commu-

nication links prior to network simulation, in the event that communication will be

blocked by terrain features or other obstacles. The user will be able to display all links

between nodes to determine if signal blockage will occur. Based on this information,

the user can then reposition assets if necessary. For example, if a mountain range

is blocking communication between a tank and a helicopter, it may be possible to

restore communication if the helicopter is positioned at a higher altitude. Display-

ing communication links prior to simulation improves the accuracy of the simulation

results.

3.3.2 Simulation. Once the scene has been defined by the user, the 3D scene

must be manually translated into an equivalent 2D version in NS-2. The 2D network

nodes should be positioned in a way that reflects the 3D positioning, and animation

routines must be recreated in NS-2. The user must then define network flows for each

node in the network, including data rates, propagation delays, queueing delays, and

so on, as they normally would for NS-2 simulations today. The simulation can then

be executed, which will then create a trace file to be used with the visualization.
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Figure 15: Sample NS-2 trace file

The 3D network visualization will require an output file from a network simula-

tor to provide realistic results. The file format for this research is an NS-2 trace file,

typically used by the Nam visualization to display simulation results. The structure

of this file format makes visualization of the simulation results fairly straightforward.

Figure 15 shows a sample NS-2 output file in a format typically used with the

Nam visualization. It is important to understand what each symbol means in the

trace file to correctly implement the visualization. Lines starting with an h indicate

that a packet is transmitted to the next hop. Lines starting with an r indicate that

the packet has been received by the destination node. Lines that begin with + and -

indicate enqueue and dequeue, respectively. The next parameter, -t, on each line is the

corresponding time stamp, which indicates at what point in the simulation an event

occurs. The next two parameters, -s and -d, indicate the source and destination

nodes, respectively. The parameter -i establishes a packet identification (ID) field

that can be used to track packets as they flow through the network. The remaining

parameters will be unused.

3.3.3 Network Visualization. Once the trace file is generated by the simu-

lation, it can then be imported into the 3D scene to display simulation results. The

created visualization will utilize the NS-2 simulation file output to display the net-

work activity in the simulation, much as Nam is used today. The packet animation

subroutine will be triggered by each h line to indicate that a packet is being trans-
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mitted from the source node to the destination node. By using the ID field and the

time stamps from the h line to the corresponding r line, the visualization can deter-

mine how quickly each packet will travel from source to destination. This allows the

visualization to accurately portray network events according to the simulation.

3.4 Measures of Success

Due to the subjective nature of information visualization, it can be difficult to

establish effective measures of success for a visualization. However, as discussed in

Chapter II, Section 2.3, prior research outlines a number of goals which can be used to

provide some level of evaluation for the created visualization. These evaluation meth-

ods primarily fall into two categories: effective information visualization and effective

communication network visualization. A third method of evaluating visualization is

through human testing, though this method is not without its share of difficulties.

3.4.1 Effective Information Visualization. There are many suggested meth-

ods for evaluating whether a given visualization is effective at conveying information

while minimizing user frustration. The following list enumerates the goals to be eval-

uated against; further detail follows in subsequent sections. The created visualization

should:

1. Allow users to have control of time and space [19]

2. Facilitate narration of events [10]

3. Stand on its own [15]

4. Be based on non-visual data [15]

5. Create a result that is readable and recognizable [15]

6. Adapt to serve multiple needs [34]

7. Make effective use of spatial layout and grouping [6]
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3.4.1.1 User Control of Time and Space. Allowing the user full control

of time and space averts many problems when transitioning from a 2D communication

network to a 3D one. This goal will be achieved in the created visualization by allowing

the user to have complete control over the scene camera, including panning, zooming,

and rotating the scene as desired. The user will also be able to move forward or

backward in time to examine events of interest as the scenario executes.

3.4.1.2 Narration of Events. The created visualization will support

the narration of events by shifting the narration of events from the presenter to the

visualization itself. Accurately depicting battlefield events, including network traffic,

directly aids the presenter by painting a clear picture of the operation environment.

This will create an intuitive representation that allows the presenter to focus more on

network event details and spend less time explaining the scene itself.

3.4.1.3 Independence. The created visualization will portray the bat-

tlefield scene and ongoing communication in such a way that it will not be necessary

for the user to reference the original trace data to understand what is happening. By

mimicking reality as must as possible, the created visualization will provide a repre-

sentation of a battlefield scenario that requires minimal explanation. The user will

be able to comprehend the scenario without needing to examine the NS-2 trace data

to determine context.

3.4.1.4 Based on Non-visual Data. The visualization will be executed

based on an NS-2 trace file, which is purely textual in nature. To the layperson, this

file appears as a string of random numbers and letters. For someone that understands

the NS-2 file convention, network events can be read manually from the file, though

this is incredibly tedious and mistakes are easily made. The created visualization will

take this data and present it in a more understandable manner.
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3.4.1.5 Readable and Recognizable. Creating a 3D scene that ac-

curately depicts a real-world battlefield scenario through the use of realistic asset

models and terrain will create a scene that is easily readable and recognizable to the

user. For example, a tank will be immediately recognized as a tank, a plane will be

immediately recognized as a plane, and so on. Positioning these realistic assets in a

realistic terrain environment creates a coherent, meaningful framework that can be

rapidly understood without conscious thought [36].

3.4.1.6 Adaptability. The visualization is designed to support any

number of battlefield scenarios, including the use of numerous asset types and any

number of nodes. The visualization will prove useful for modeling any type of battle-

field scenario, from small-scale operations including a handful of assets, to large-scale

operations utilizing dozens of assets. The created scene is designed in particular to

depict battlefield scenarios, but could easily be extended to other applications by

replacing the 3D models with those of other significance to the user.

3.4.1.7 Spatial Layout and Grouping. The spatial layout of scene

objects must be carefully considered when creating a visualization. By accurately

maintaining the interspatial relationships of battlefield nodes, the user gains a greater

understanding of the scenario. Assets will be positioned in exactly the same manner

as their real-world counterparts, resulting in a high degree of visual credibility. Users

will be able to rely on the location of the visualization nodes and draw appropriate

conclusions.

3.4.2 Effective Communication Network Visualization. Since network visu-

alization is a subset of information visualization, there are fewer evaluation methods

for determining its effectiveness. The primary method is to compare the newly cre-

ated visualization to existing visualizations, though there are two other considerations.

The created visualization should:

1. Accurately display network simulation events [34]
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2. Be efficient with regard to data display [34]

3. Provide equivalent capability as existing visualizations

3.4.2.1 Accurate and Efficient Network Visualization. The visualiza-

tion as a whole, as well as each individual network traffic animation scheme explored

in Section 3.1.5, will be evaluated based on accuracy of network events and effi-

ciency of data display. Accuracy in this case means that every simulation event has

a corresponding visualization event and packets are transmitted at the same rate as

the simulation. For network visualization, it is primarily packet animation that can

quickly fill the screen with an overwhelming amount of data, which creates a need for

efficient data display. In some cases, the user cannot effectively process everything

that is occurring on the screen, which necessitates an animation scheme that allevi-

ates this problem. Especially when combined with node mobility, some animation

schemes may be too cluttered while some may be too sparse in detail. Each packet

animation scheme has associated benefits and drawbacks, and will be compared with

each other to determine the viability of each. Some potential benefits and drawbacks

are discussed in the sections that follow, for each proposed packet animation scheme.

Standard Animation Scheme. This is the simplest of the packet

animation schemes, in which every simulated network event has a corresponding event

in the resulting visualization. Since there is a one-to-one correspondence from simula-

tion to visualization, this animation scheme is expected to be very accurate. However,

when a simulation containing a high volume of traffic is combined with a scene with

numerous mobile assets, this animation scheme is likely to overwhelm the user with

too much information. Thus the standard packet animation scheme is expected to

have a high degree of accuracy, but a low degree of display efficiency.

Packet Aggregation. The first explored packet animation scheme

to address the shortfalls of the standard scheme involves reducing the volume of traffic

by a set factor. For example, network traffic can be reduced by a factor of 100 by

47



visualizing every 100th simulation event at each node. In this manner, the display

efficiency is increased, though it comes at a cost of accuracy. The user still has a

rough idea of the volume of traffic leaving each node, but it is not as precise as the

default scheme. Thus this scheme is expected to have a medium degree of accuracy

and a medium degree of efficiency. There is an additional shortfall, in that some

nodes may appear to be inactive if they rarely transmit. Since each source generates

traffic at a different rate, less active nodes rarely send visualized packets, while more

active nodes send multiple visualized packets over the same time period. A less active

node may appear to be dormant for long periods of time, though this may not be the

case. Additionally, in many network simulations, a successfully transmitted message

is often followed by an acknowledgment back to the source but in this animation

scheme, this exchange cannot be seen.

Enlarged Packets. The second explored packet animation scheme

attempts to address one problem of the packet aggregation scheme, in which less

active nodes may appear dormant despite infrequent transmissions. This problem

is addressed by visualizing packets in a fixed time interval and varying packet size

based on accumulated simulation packets. For example, in a one-second time block,

a more active node may have generated 1000 packets, whereas a less active node may

have only generated 100 packets. In this scenario, the visualized packet sent from

the more active node will be 10 times larger than the visualized packet sent from

the less active node. However, like the packet aggregation scheme, this animation

scheme also is unable to convey the message/acknowledgment handshake between

nodes. This scheme also makes the scene appear as though all communication is

synchronous, which may be misleading to the user. Like the packet aggregation

scheme, this animation scheme is expected to have a medium degree of accuracy and

a medium degree of efficiency.

Triggered Links. Unlike the previous animation schemes, this

scheme does not display packets, instead focusing on connectivity. The result is
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a scene that is highly efficient at displaying data, though performs very poorly at

accurately displaying network traffic. The size and transparency of the link drawn

between two assets gives the user some indication of the volume of traffic exchange,

but distinguishing between the opacity of two links can be difficult. Additionally,

determining which endpoint is the source and which is the destination is not possible,

so traffic direction is not known. However, if the user is only interested in a high-level

overview of the connectivity of the network, this scheme works extremely well. Since

links are only drawn if they are currently in use, it becomes easy to see which nodes

are currently communicating and which are not. This scheme is expected to have a

low degree of accuracy, but a high degree of display efficiency.

Inspection Button. Implementing an inspection button attempts

to strike a balance between the time difference of mobile assets and network commu-

nication. This packet animation scheme is a hybrid of the standard scheme and the

triggered links scheme. When the inspection button is inactive, assets move freely

about the scene, but packet animation is not shown; the links are drawn in the manner

of the triggered links scheme, but the packets are not visualized. When the inspection

button is active, packet animation is shown as in the standard scheme, and mobile

assets move extremely slowly, appearing to be nearly stationary. The ability to toggle

the current state of the visualization creates two complementary situations. In the

state in which the inspection button is inactive, the scene is efficient with regard to

data display, though inaccurate with regard to network traffic. In the state in which

the inspection button is active, the opposite is true—the display space is cluttered

and inefficient, but highly accurate with regard to network communication. The re-

sult is a visualization tool that can be altered on the fly to display the current desired

amount of detail.

Summary. A summary of the different animation schemes can be

seen in Table 1, which shows that there is no universal solution among the animation

schemes explored. Accuracy and efficiency are two sides of the same coin, and it is
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Table 1: Comparison of proposed packet animation schemes
Animation Scheme Accuracy Efficiency

Standard High Low
Packet Aggregation Low Medium
Enlarged Packets Low Medium
Triggered Links Low High
Inspection Button–Inactive Low High
Inspection Button–Active High Low

difficult to increase one without decreasing the other. However, by offering many

options, the user is free to explore which scheme is most useful for a given scenario.

3.4.2.2 Comparison to Existing Visualizations. Of the many network

visualizations discussed in Chapter II, Section 2.2, the visualization created by this

research will be compared with one 2D visualization and one 3D visualization. The

created visualization will be compared with the NS-2 visualization, Nam, as well as

OPNET 3DNV to determine distinguishing characteristics of each. From a network

state perspective, packet animation, queue size, and node movement will be examined

for each visualization. There will be a discussion of the features present in the newly

created visualization that are not present in either Nam or OPNET 3DNV.

3.4.3 Human Testing. As discussed in Chapter II, human testing can be

useful for quantifying visualization, though it brings about numerous difficulties. Suc-

cessfully designing a test that eliminates user bias is a daunting task that can take a

significant amount of time. Users are often won over by the most attractive visualiza-

tion, regardless of capability. Data collection itself can take a significant amount of

time, depending on test subject availability. Finally, once these results are collected,

it can be difficult to validate them in a meaningful way due to the lack of standards

in the visualization community. Due to these difficulties with human testing and

the imposed time constraints, human testing will not be performed for the created

visualization, though it will hopefully be explored at a later date.
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3.5 Summary and Way Forward

This chapter has outlined the steps necessary to successfully create the 3D

network visualization tool. The chosen development environment should prove to

be a suitable platform to create such a tool, and utilizing NS-2 trace data avoids

the complications often encountered with proprietary software. By aiming to achieve

the development goals described and keeping the measures of success in mind, a

3D network visualization can be created that is capable of accurately and efficiently

displaying network events and packet animation.
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IV. Evaluating the Created 3D Network Visualization Tool

This research produced a 3D communication network visualization tool that is capable

of rendering a realistic battlefield scene, along with ongoing communication between

network nodes. The new tool allows users to create 3D battlefield scenarios, and

parses NS-2 trace files to display network communication. Each topic discussed in

Chapter III is revisited and the realized tool is compared with the proposed criteria.

Visualization is very subjective in nature, and therefore difficult to quantify. The tool

is evaluated through visual inspection, with every attempt made to be as objective

as possible. The core functionality of the tool has been realized, though further

refinements would be very beneficial.

4.1 Development Goals Revisited

In Section 3.1, six development goals were outlined, serving as a roadmap for

creating a 3D network visualization. In this section, each development goal is revisited

to assess whether each is satisfied. As with all software development, tradeoffs must

be made and some features placed on the back burner, possibly to be implemented in

a future version. The six goals are reprinted below for ease of reference.

1. Use realistic assets, rather than generic boxes or spheres

2. Use realistic terrain and position the assets at various elevations

3. Allow assets to be mobile according to user input parameters, i.e. flight patterns

4. Show network connectivity as assets travel throughout the scene

5. Show network traffic via animated sequences

6. Allow the user to pan, rotate, and zoom around the scene

4.1.1 Realistic Assets. The 3D scene is constructed from freely available 3D

models of various military assets, including tanks, Humvees, helicopters, and planes.

The process of placing models onto the terrain is fairly straight-forward, as assets can

be positioned using a simple X, Y, Z coordinate system to specify their location. An
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Figure 16: Realistic assets positioned on a realistic terrain

example of the realistic assets can be seen in Figure 16. The assets shown here are

just a sample of the 3D models available, which can easily be swapped out to suit the

desired operating environment.

4.1.2 Realistic Terrain and Positioning. Similar to the realistic assets,

there are also openly available terrain models that mimic real-world environments

fairly well. Figure 16 shows a sample terrain with assets positioned throughout the

scene. This sample terrain illustrates how network communication could potentially

be blocked by terrain features such as hills or mountains. The shown terrain is

not based on real-world data, though more realistic terrains could be created from

topological data or purchased from a third-party vendor. Terrains based on real-

world data would provide increased realism to accurately represent an operational

environment, including precise placement of buildings and foliage. Figure 17 depicts

two other sample terrains, including mountains, trees, and water.

4.1.3 Mobile Assets. The created visualization supports circular mobility

paths for both ground and air nodes. The user must define the circular path by
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(a) Terrain featuring a mountain range

(b) Terrain featuring trees and lakes

Figure 17: Two sample terrains that can be used to create 3D scenarios
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specifying an X, Y, Z coordinate that indicates the center of the circular path, a

desired radius, and the amount of time each revolution should take. This allows

assets to travel throughout the scene as defined by the user. The series of images in

Figure 18 shows an A-10 aircraft flying in a circular path near other assets. The A-10

maintains connectivity to the connected nodes at all times.

It was originally envisioned that the visualization would also support linear

animation paths, but this was not achievable in the given time frame. This would

enable mobile assets to be defined by a series of sequential waypoints, allowing a node

to travel through the scene in a very specific manner. This addition would greatly

increase the mobility capabilities of the created network visualization tool.

4.1.4 Network Connectivity. The created visualization in Figure 19 depicts

two communicating assets as connected via a thin green cylinder. The default behavior

only connects those nodes that communicate, which allows the user to quickly get

an idea of which nodes communicate during the scenario. The visualization can be

modified to display all available links or to only draw links during communication,

which must be set by the user before visualization runtime. An additional aspect of

this development goal is to maintain connectivity in the event that assets are mobile.

This has been successfully achieved and can be seen in action in Figure 18. The tanks

and Humvee ground assets maintain connectivity to the A-10 as it travels throughout

the scene.

4.1.5 Network Traffic Animation. The created visualization shows data

packet flow between communicating nodes, implemented as spheres traveling along the

communication link cylinders. Each network event in the NS-2 simulation generates

a visualized packet in the visualization, which travels from source to destination. A

sphere, representing one data packet, is sent from one node to the next, traveling

along the cylinder connecting them. This is demonstrated in Figure 20, though the

animation aspect is lost in the figure. Instead, the packet has been made increasingly

opaque to emulate animation from the tank to the helicopter.
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Figure 18: The A-10 maintains connectivity while traveling around the scene
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Figure 19: Network assets are connected with green cylinders, which indicate po-
tential communication paths

Figure 20: Simulated packet flow between network assets—the packet is flowing
from the tank to the helicopter
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There were numerous packet animation schemes outlined in Chapter 3, though

only the standard animation scheme was realized due to time limitations. In the

standard animation scheme, each simulation network event has a corresponding visu-

alization network event. This is the most basic of the proposed animation schemes as

well as the most accurate, so priority was given to implementing it correctly. The visu-

alization tool could be further improved by the implementation of the other proposed

schemes, but this was not achievable in the available time for this research.

4.1.6 Scene Control. The ability for the user to pan, zoom, and rotate

the scene as needed is trivially satisfied by core functionality of OSG itself. OSG

provides the ability for the user to freely position the scene camera, allowing the

viewer to investigate the scene as desired. This allows the user to zoom in to examine

a particular node, as in Figure 21. This figure shows a closeup view of an A-10, which

is connected to tank assets on the ground. User control over the scene camera also

solves the problem of node occlusion, in which a foreground node blocks a background

node. Figure 22 shows how the user can reposition the camera to avoid this problem,

uncovering the Humvee from behind the foreground helicopter.

4.1.7 Discussion. All of the six development goals were completely realized,

which is a significant achievement. The resulting scene is a very intuitive repre-

sentation of a realistic battlefield scene, including communication links and packet

animation. The implemented asset mobility capabilities allow air, land, and sea as-

sets to travel throughout the scene in a realistic manner. Finally, allowing the user

full control of the scene not only provides for a more immersive experience, but also

alleviates some of the problems of transitioning from 2D to 3D.

4.2 Development Environment

OSG proved to be a suitable development environment for creating a 3D network

visualization, and its core functionality proved quite useful. Its camera controls in

particular were extremely useful in eliminating the node occlusion problem without
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Figure 21: The user is free to zoom in on any asset, in this case an A-10 connected
to assets on the ground

extensive programming. Positioning nodes and loading terrain were straightforward

through OSG’s intuitive use of the Cartesian coordinate system for populating the

scene. OSG’s built-in functions for efficiently rendering geometric shapes supported

the desire to animate cylinders and spheres to indicate data flow in the network.

Finally, since OSG supports numerous 3D model file types, finding example models

to use in the scene was also straightforward.

4.3 Simulator/Visualization Synchronization

The simulation is synchronized with the visualization using the three step pro-

cess as outlined in Section 3.3. First the scene is created using the 3D tool, including

placement of network assets on the desired terrain. Communication links can then

be populated between assets as desired by the user, allowing the user to examine the

links for possible obstacles due to hills, trees, or other objects. This allows the user

to reposition assets or add new assets to ensure successful communication. Next this

scene is recreated in 2D in NS-2, preserving spatial relationships as much as possible.

Each network node in the 3D scene must have a corresponding node in the 2D simu-
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(a) The helicopter in the foreground blocks view of the second Humvee

(b) By repositioning the camera, the second Humvee can be seen

Figure 22: These images demonstrate how camera control can help alleviate node
occlusion
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Figure 23: A populated 3D scene featuring assets, terrain, and communication links

lation. After the simulation is executed, the trace file can then be loaded into the 3D

scene for visualization of network traffic. Each of these steps is explored in further

detail in the following sections.

4.3.1 Scene Creation and Validation. Creating the scene requires the user

to define the number, type, and location of battlefield assets to create the desired

scenario. Once the scene is populated with the appropriate assets, the user must

define animation paths if necessary for any mobile nodes in the network. Finally,

communication links can be drawn between communication nodes, allowing the user

to investigate the scene for potential collisions. After the scene is created, the user

can visually inspect the scene to verify it meets the user’s needs. Figure 23 depicts

a populated scene with tanks, Humvees, helicopters and A-10s positioned on a re-

alistic terrain, connected with desired communication links. It can be seen that no

communication links are hindered by terrain features or other objects.

4.3.1.1 Asset Population. Network assets in the 3D scene are popu-

lated based on user input. The user is able to specify the number, type, and location
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Figure 24: These tank assets are partially underground

of assets as well as terrain for the scene. Node location is specified by Cartesian coor-

dinates (X, Y, Z ). Ground nodes are identified by a Z component of zero, and these

assets are automatically positioned just above the terrain. Due to hills and valleys

in different terrains, this requires updating the Z component to be higher or lower

as necessary. Figure 24 demonstrates what would happen if the Z component is not

automatically adjusted. The tanks in this figure are located partially underground.

Air and sea assets are positioned using all three Cartesian coordinates to allow air

assets to be positioned high above the terrain and sea assets to be partially submerged

in a body of water in the terrain.

4.3.1.2 Animation Paths. The user is also able to define circular

animation paths for mobile assets such as airplanes and tanks. These paths are

defined by the Cartesian coordinates of the center of the circular path, the desired

radius of the circle, and finally the time for one revolution, which determines the speed

of the mobile asset. Ground nodes automatically have their Z component updated to

allow them to traverse the scene over terrain features, as seen in Figure 25. In this
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figure, the tank is automatically adjusted to follow the terrain, including tilting when

required.

4.3.1.3 Communication Links. Depending on the selected terrain,

there is the potential for features such as mountains or valleys to impede communi-

cation. In these circumstances, the user can populate desired communication links

between nodes and visually inspect the scene for collisions. In the event that a link is

blocked by a mountain, tree, or other feature, the user can then reposition the network

node if desired or add an additional asset to route communication around the object.

If the user does not wish to reposition nodes, the visualization will still execute nor-

mally, though it may be visually confusing. For example, data packets may disappear

into a mountain and then reappear on the other side. Displaying communication links

before simulation assists the user in identifying possible intersections, which can then

be removed by fine-tuning the scenario.

Visualizing potential communication links prior to simulation adds further cred-

ibility to the network simulation. The user can ensure that the NS-2 simulation is built

only using those links that are not hindered by other scene objects. This provides

a significant analysis tool for the user, since battlefield scenarios can be inspected

for communication barriers before being simulated and deployed. For example, Fig-

ure 26 depicts a simple example of signal blockage due to terrain interference. In this

scene, two tanks are on opposite sides of a hill and cannot effectively communicate.

Upon seeing this, the user can add an air asset to the scenario to allow the tanks to

communicate successfully.

4.3.2 Simulation. After the scene has been defined by the user, the NS-2

simulation must be created, maintaining asset position and animation. Based on the

3D scene described previously, seen in Figure 23, an equivalent 2D network is built

in NS-2. This 2D network can be seen in Figure 27, shown side by side with the 3D

scene. Node placement in this 2D network is roughly equivalent to that in the 3D

scene, and the communication links have been drawn accordingly.
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(a)

(b)

(c)

Figure 25: This series of images depicts a mobile tank asset traveling through the
scene, automatically adjusting for the changing terrain

64



(a) These two tank assets cannot communicate due to terrain blockage

(b) By adding an additional air asset, communication can be restored

Figure 26: Populating communication links prior to simulation allows the user to
discover scenarios in which assets cannot communicate due to terrain blockage
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Figure 27: There is a one-to-one mapping from the 2D NS-2 simulation to the 3D
visualization

The NS-2 simulation used to generate the input file for the 3D visualization

is fairly trivial in nature, though it is sufficient to show the capability of the tool.

Latencies are defined between nodes that roughly reflect the relative positions of

assets in the 3D scene. For example, the two helicopters have the shortest latency

between them since they are closest together. For the sake of simplicity, each link is

defined to be a full duplex communication path with a bandwidth of 5 megabits per

second, and network packet size is fixed at one thousand bytes. These parameters

can easily be changed in the simulation to accurately reflect real-world operations,

but they are adequate for the sake of demonstration.

Traffic is generated by 4 nodes, with 4 separate designations, generating traffic

along all possible links. Figure 28 shows each of these 4 network flows in a different

color. Firstly, traffic is generated by one Humvee (node 0), destined for the distant

A-10 (node 9), requiring the nodes along the way to forward the traffic as necessary.

Secondly, traffic is generated by a different Humvee (node 2), destined for one tank
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Figure 28: Color-coded Nam visualization of network traffic paths

node (node 4). Thirdly, traffic is generated by a different second tank (node 5) with

destination a third tank (node 3). Finally, traffic is sent from one helicopter to the

other (node 8 to node 7). The trace file from this simulation will next be imported

into the 3D scene for network visualization.

4.3.3 Network Visualization. The final step is to import the NS-2 trace

file into the created 3D scene, which allows the user to see the resulting network

traffic flows. The 3D visualization tool will interpret the trace file and automatically

animate packets based on the selected animation scheme. The standard animation

scheme simply animates a visualized packet for each simulated packet, as depicted in

Figure 29. This figure shows data packets traveling along each communication link

from two different camera angles, defined by the events in the simulation trace file.
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Figure 29: This image depicts network traffic in the 3D scene, driven by the trace
file generated during the network simulation

4.4 Measures of Success Revisited

In Chapter III, Section 3.4, measures of success were outlined to answer the fol-

lowing two questions: Is the created visualization an effective information visualiza-

tion? Is the created visualization an effective communication network visualization?

Each of these questions is explored in the sections that follow, based on previously

identified criteria.

4.4.1 Effective Information Visualization. Before delving into specific com-

puter communication network aspects, it is first necessary to determine whether the

created 3D visualization is effective at conveying information. Reprinted from Sec-

tion 3.4.1, the following seven measures of success are explored one by one in the

sections that follow. Evaluating information visualization is subjective in nature,

though every attempt has been made to be as objective as possible.

1. Allow users to have control of time and space [19]

2. Facilitate narration of events [10]
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3. Stand on its own [15]

4. Be based on non-visual data [15]

5. Create a result that is readable and recognizable [15]

6. Adapt to serve multiple needs [34]

7. Make effective use of spatial layout and grouping [6]

4.4.1.1 User Control of Time and Space. User control of the scene

camera was previously discussed in Section 4.1.6, though there was no discussion of

user control over the time domain. Firstly, the user is free to move the camera to any

position in the scene, which effectively solves the previously discussed node occlusion

problem, and also allows the user to view the network in any manner desired. For

example, the user may wish to view the network in a 2D manner, which can be done

by positioning the camera in a top-down overhead view, provided that no asset is

directly above another asset. This type of 2D view can be seen in Figure 30. This

view provides a bird’s eye view of the network scene, though elevation differences

are obviously lost. However, for most scenarios a 3D view is more appropriate, since

not all scenes lend themselves to this viewpoint. Since nodes are often mobile as the

scene executes, it is necessary for the user to adjust the scene camera to track these

movements. To fully evaluate the 3D battlefield scenario, the view is free to rotate,

pan, and zoom throughout the scene and investigate the relationships between nodes.

Secondly, the user would ideally have full control over the time domain, with

the ability to fast forward, rewind, and pause as required to understand the network.

However, this goal was not achievable in the permitted time frame. The network

animation simply displays network events in sequential order, and does not allow the

user to rewind or pause the scene. This capability could be added in a future version,

but is not functional at this time.

4.4.1.2 Narration of Events. The created visualization does an ex-

cellent job at facilitating story-telling. Since the visualization itself conveys a vast
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Figure 30: An overhead view gives a 2D representation of the network

amount of information, such as terrain conditions, deployed assets, and the geo-

location of each asset, the presenter’s job is made much easier. The presenter is

therefore free to dive more deeply into the details of the operation, without having

to give an extensive explanation of the scene itself. Communication officers can focus

more of their effort into explaining the data transmission in the scene and those being

briefed can quickly comprehend what is happening. The 3D visualization tool is a

great communication aid, which enables effective and efficient narration of battlefield

events.

4.4.1.3 Independence. Even without an explanation, the animated

scene conveys a story of a battlefield communication scenario. Since nodes are repre-

sented by their real-life counterparts, the user does not need to reference a legend to

determine which node is which. It is fundamentally clear which nodes are airborne

and which nodes are currently communicating. The scene can be understood on its

own, without the need to reference or understand the original NS-2 trace data. In

summary, the scene stands on its own.
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4.4.1.4 Based on Non-visual Data. As was previously seen in Fig-

ure 15, the NS-2 output trace data is highly non-visual data. For someone unfamiliar

with NS-2, the trace data resembles a random string of letters and numbers. For

someone that is familiar with NS-2, the network events can be followed, though do-

ing so is extremely tedious. The created visualization takes this non-visual data and

represents it in an intuitive, visual manner.

4.4.1.5 Readable and Recognizable. Since the created 3D visualization

uses real-world models and terrain, the resulting image has strong visual credibility.

This allows the user to process the battlefield scenario with little conscious thought,

since the majority of data is processed by the human visual system. The scene highly

resembles a real-world scene, which results in a visualization that is easily readable

and recognizable.

4.4.1.6 Adaptability. The created visualization as designed is useful

for depicting network events on the battlefield, though it can be altered to suit other

needs. Firstly, when used as designed, the 3D visualization can be used to represent

any number of battlefield scenarios, from small-scale operations to large-scale opera-

tions involving dozens of assets. In the event that network communication is not of

interest, the tool is also useful for visualizing battlefield operations alone. The tool

in its current state is useful for getting an overview of the battlefield, though could

be useful for simulating full operations with the addition of more robust mobility

functionality. Aside from these military applications, the 3D models can easily be

replaced with any number of other models to create a non-military scene as desired

by the user. This flexibility in the created visualization tool shows that is adaptable

to serve multiple needs.

4.4.1.7 Spatial Layout and Grouping. Spatial layout is important to

any visualization and is especially important when accurately depicting a realistic

battlefield scene. The created 3D visualization allows assets to be positioned exactly
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as they would be in the real world. Retaining the interspatial relationships between

network nodes results in a scene that is easily understood by the user.

4.4.2 Effective Communication Network Visualization. Aside from deter-

mining whether the created 3D visualization tool is effective at information visualiza-

tion, it is also necessary to determine whether it is effective at network visualization.

The three following measures of success were established in Section 3.4.2 and are

reprinted here for ease of reference. These measures of success are explored one by

one in the sections that follow. Once again, every effort has been made to be as

objective as possible, though evaluating visualization is highly subjective.

1. Accurately display network simulation events [34]

2. Be efficient with regard to data display [34]

3. Provide equivalent capability as existing visualizations

4.4.2.1 Accuracy and Efficiency. The first two measures of success

for network visualization will be discussed in this section, primarily because accuracy

and efficiency are inversely related. Providing a more accurate network visualization

results in an overcrowded, busy scene, while a visualization with high data efficiency

lacks detail. The standard animation scheme mimics the packet animation in Nam,

in which every simulated packet has a corresponding visualized packet. This results

in a network visualization that is highly accurate with regard to network traffic, as

shown in Figure 31. In this figure, network data packets are flowing from each source

to the destination specified by the network simulation trace file.

The standard animation scheme is not without drawbacks, however. It can

be potentially overwhelming to the viewer, especially when combined with mobile

nodes. For the network analyst that needs all details of ongoing communication, this

animation scheme works very well since it is the most accurate. However, for a user

that wants a high level overview, this animation scheme becomes incredibly busy for

anything but the lightest of traffic. In a scenario in which there is a high volume
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Figure 31: This image demonstrates the standard animation scheme, in which
packets are flowing from source to destination

of traffic flowing over each link, the links can potentially become overpopulated to

the point that it becomes hard to determine the direction traffic is flowing. In the

event of full duplex links, in which traffic is flowing in a bidirectional manner, it

is extremely difficult to follow the communication flow amongst network entities.

Figure 32 demonstrates this problem, in which it can be seen that communication

links become saturated to the point of appearing as solid white lines.

The standard animation scheme is the first step in successfully combining 3D

network visualization with packet animation. The standard scheme is useful for sce-

narios featuring light data traffic, but alternate packet animation schemes are needed

for high traffic scenarios.

4.4.2.2 Comparison to Existing Visualizations. Table 2 shows a com-

parison of this research with other network visualization tools. It is important to note

that these tools were evaluated with a battlefield scenario in mind. For example, Nam

and iNSpect are useful for describing the state of a network, but they are poor tools

for describing a battlefield scenario in particular due to a lack of visual credibility.
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Figure 32: In instances of extremely high network activity, communication links
can become saturated, which increases the difficulty of interpreting the visualization

NetViz is slightly better since it uses military assets to represent network nodes, but

the 3D tools provide the most clear scenes of battlefield environments, requiring min-

imal explanation. Similarly, the 2D tools Nam, iNSpect, and Netviz stand on their

own for general network visualization, but in the case of battlefield scenarios, they

require extensive explanation compared with the 3D tools. This table summarizes the

key differences between the tool created as a result of this research; however, more

detailed comparisons to Nam and OPNET 3DNV follow in subsequent paragraphs.

Nam. Since the created visualization tool runs on an output

file intended for Nam, it is the easiest 2D tool to compare against, though most of

the comparisons apply to the other 2D visualizations as well. The visualization tool

created through this research compares favorably with Nam with regard to packet

animation and realism and unfavorably with regard to secondary network traits and

user control over time. Firstly, the packet animation in the standard animation scheme

in the created tool is equivalent to that of Nam; each simulated packet generates a

visualized packet. On the other hand, Nam shows current queue status at each node
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Table 2: Comparison of this research with other network visualization tools
Nam iNSpect NetViz OPNET 3D This Research

High Visual Credibility X X

Realistic Assets X X X

Realistic Terrain X X

Realistic Mobility X X

Packet Animation X X X

Current Queue State X X

Collision Detection During Sim Prior to Sim
User Time Controls X X X X

User Camera Controls N/A N/A N/A X X

Facilitates Story Telling X X X

Stands on its Own X X

and indicates when a packet is dropped due to a full queue. The created tool is

incapable of this in its current state. From a perspective of realism, Nam’s limited 2D

representation of the network is obviously incapable of matching the 3D visualization

tool’s visually credible battlefield scene. Lastly, the time slider in Nam is an extremely

useful feature when analyzing data networks; the 3D visualization tool would greatly

benefit if it had similar capability.

OPNET 3DNV. Comparisons to OPNET’s 3DNV suite are nec-

essary, simply because it was created for many of the same reasons. Considering the

commercial nature of OPNET, it is interesting that OPNET’s 3DNV package makes

no attempt to animate packets. Faced with the difficult task of balancing animated

packets with mobile assets, OPNET chose to avoid this problem altogether by only

visualizing connectivity. From a realism perspective, the visualization tool created as

part of this research and the OPNET tool are similar. Realistic assets are positioned

on a terrain in much the same manner, and links are drawn between communicat-

ing nodes in a similar manner. The ability to view animated packets gives the tool

created by this research a significant advantage over the OPNET tool, which only

displays connectivity. The OPNET tool is sufficient for a high-level overview of bat-

tlefield communications, but digging into the details of the scene requires the ability
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to investigate traffic on a packet level, which is not possible with the OPNET tool.

One area that distinguishes the OPNET tool from the tool created by this research

is the handling of collision detection. In the OPNET tool, collisions are identified as

the simulation executes, whereas in the tool created by this research, collisions can

be found prior to simulation during the scene creation and validation step. Identify-

ing collisions early reduces the need for running multiple simulations, which can save

time for complex scenarios. Overall the 3D visualization tool created by this research

shares much of the same functionality as OPNET 3DNV. Being a commercial product,

the OPNET tool is more user friendly and robust. The tool created by this research

is more expandable and customizable to suit the user’s needs, since the source code

can be directly modified.

4.4.3 Discussion. In the previous two sections, we have seen that the

created visualization meets most of the proposed measures of success. In the area of

information visualization, the created 3D visualization fully satisfies six of the seven

criteria and partially satisfies the remaining criteria, only lacking with respect to user

control over the time domain. This remaining criteria could be solved with further

software development.

The standard packet animation scheme is very accurate with regard to network

simulation events, but not efficient with regard to data display during high traffic

scenarios. This is an area that warrants further development, by implementing the

other packet animation schemes outlined in Chapter 3. Accuracy and efficiency are

two sides of the same coin, and it is often difficult to increase one without decreasing

the other. However, by implementing many options, the user would be able to explore

which scheme is most useful for a given scenario.

4.5 Summary

The examples in this chapter illustrate the capabilities and functionality of the

created 3D network visualization tool. The result is a flexible visualization tool that
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can be used for network animation as well as other applications. The rendered scene

has a high degree of visual credibility, allowing the user to quickly process the scene

visually. The tool could be improved through the implementation of time controls

for the user and the implementation of additional animation schemes, but it is still

a useful tool despite these shortcomings. The tool compares favorably with exist-

ing 2D network visualizations and shares many features of OPNET 3DNV. The tool

needs further refinement, but satisfies the core functionality of network visualization.

Based on the previously established criteria, the created 3D network visualization

is both effective at information visualization in general, and more specifically, com-

munication network visualization. Furthermore, by developing this tool in an open

source environment, the door is opened for future network visualization research and

this research provides a significant contribution to the network visualization research

community.
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V. Contributions and Future Work

This research provides three significant contributions with regard to network visu-

alization. Firstly, the created tool is an excellent communication aid that facilitates

effective communication. Displaying the battlefield network scenario in a realistic and

intuitive manner shortens the time required for the presenter to explain the scene.

This means a communication planner, presenting the scenario to the commander, has

more time to address issues such as terrain masking, packet loss, node movement, or

other areas. Secondly, this research explores combining 3D network visualization with

real-time network packet animation. This packet animation provides a significant ca-

pability to communication planners by allowing them to see all ongoing network traffic

in a realistic, 3D manner. Lastly, this research provides a significant contribution to

the network visualization community through its flexible 3D visualization tool. This

tool can not only be used to represent battlefield communication as discussed, but

can be expanded to represent other 3D network communication needs, such as mobile

ad hoc or sensor networks.

The 3D visualization tool currently provides a significant capability, though it

can be further improved by new features and enhancements to existing features. In

particular, user control over the time domain would greatly improve the tool, as would

more robust asset mobility. Allowing the user to move forward and backward in time

would facilitate the inspection of network events, while allowing assets to move in a

linear fashion would allow for a more accurate representation of the real world. A

Heads-Up Display (HUD) could provide additional capability by displaying current

network statistics or scene data. For example, the average packets transmitted per

second could be displayed in one corner of the screen, providing a metric for current

network load. Another area for future development is to implement the other packet

animation schemes described in Chapter 3, including the addition of color to the

proposed schemes. Links could be color coded depending on current utilization of its

bandwidth, or packets could be color coded based on size. These are just a few of the

ways the tool could be improved by future enhancements.
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5.1 Contributions

5.1.1 Communication Aid. The created 3D network visualization tool di-

rectly supports military personnel by providing a tool that enables effective and ef-

ficient communication. The tool can be used to explain operational scenarios in a

realistic, visually credible manner. The visualization carries a lot of visual informa-

tion, such as terrain conditions, deployed assets, and animation paths for each asset.

The visualization helps to paint a clear picture of the battlefield, allowing communi-

cation officers to focus on the details of the ongoing data transmission, rather than

explaining the scene itself.

5.1.2 Packet Animation. OPNET 3DNV provides many of the same fea-

tures as the tool created for this research, though it avoids the problem of effective

packet animation by only displaying connectivity. This may be sufficient for a high

level overview of a battlefield scene, but a communication planner may need further

detail. This research investigates the benefits of combining 3D network visualiza-

tion with packet animation and the resulting effects on accuracy and efficiency. The

packet animation scheme explored in this research provides a solid foundation for the

investigation of more complex animation schemes.

5.1.3 Network Visualization. This research benefits the network visualiza-

tion community by providing an open-source, flexible, 3D network visualization tool

that can be tailored to meet many needs beyond the military applications discussed.

The tool could be used to visualize any type of network communication, especially

those that benefit from a 3D view. Mobile ad hoc networks as well as wireless sen-

sor networks could benefit from a 3D network visualization, where distance between

communicating nodes and any interfering obstacles could be examined.
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5.2 Future Work

5.2.1 Time Controls. The visualization tool would benefit most from the

implementation of time controls for the user. This would allow the user to move

forward and backward in time as necessary to investigate significant network events.

This would require adjusting the current position in the NS-2 trace file as well as

determining the current location of network assets. This issue is fairly straightforward

in concept, but presents many problems when trying to implement. For example,

rewinding the simulation requires determining the current state at a prior point in

time, which includes both the current NS-2 simulation events as well as any previous

events that would affect the visualization. Determining how far back to go in the

NS-2 trace file is a difficult problem to solve.

5.2.2 Linear Mobility Paths. The created visualization allows assets to

be mobile along circular paths, but the tool could be improved by implementing a

sequential waypoint system. This system would allow assets to move along linear

paths to each subsequent waypoint and allow for more complex animation paths.

Adding this capability would help the tool better mimic realistic battlefield scenarios

by allowing assets to pursue multiple disparate goals.

5.2.3 Heads-up Display. The scene could be further enhanced by displaying

real-time network statistics based on the current and past network state. Statistics

can be displayed by using OSG’s built-in text display functions, creating a useful

HUD. This allows the user to see things such as throughput, end-to-end delay, and

packet loss statistics as the scene executes. A compass could be added to one corner,

helping the user remain oriented as the scene events unfold. The average packets

transmitted per second could be displayed in one corner of the screen, providing a

metric for current network load. There are many possibilities that would be created

through the addition of a HUD to the visualization.

80



5.2.4 Other Packet Animation Schemes. Aside from the standard packet

animation scheme that was implemented, there is room for improvement through the

implementation of the other schemes outlined in Chapter 3. The visualization tool

created by this research can be greatly expanded upon by exploring other animation

schemes or by creating a hybrid of two schemes. Aside from creating completely new

animation schemes, there is also the possibility of adding color to the links and packets

in the visualization. Communication links could be color coded, allowing the user to

quickly estimate the amount of bandwidth currently being used on a particular link.

Packets could be displayed in color, with different colors indicating different packet

size thresholds. For example, a red link could indicate that the channel is using

its maximum available bandwidth, while a blue link could indicate a relatively free

communication channel. The core functionality of the tool is already in place, so

exploring additional packet animation schemes should be a straightforward endeavor.

5.3 Conclusion

This research has shown the unique capabilities when displaying a battlefield

scenario in a realistic 3D manner and the advantages over 2D visualization techniques

for these types of scenarios. Though it is in its beginning stages, this visualization

provides a promising capability that can be further expanded upon in the future.

Expanding this visualization can provide a robust framework for accurate portrayal

of battlefield scenarios, which becomes more important as the battlefield becomes

increasingly connected.
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